Modal compact Hausdorff spaces
نویسندگان
چکیده
We introduce modal compact Hausdorff spaces as generalizations of modal spaces, and show these are coalgebras for the Vietoris functor on compact Hausdorff spaces. Modal compact regular frames and modal de Vries algebras are introduced as algebraic counterparts of modal compact Hausdorff spaces, and dualities are given for the categories involved. These extend the familiar Isbell and de Vries dualities for compact Hausdorff spaces, as well as the duality between modal spaces and modal algebras. As the first step in the logical treatment of modal compact Hausdorff spaces, a version of Sahlqvist correspondence is given for the positive modal language.
منابع مشابه
Modal De Vries Algebras
We introduce modal de Vries algebras and develop a duality between the category of modal de Vries algebras and the category of coalgebras for the Vietoris functor on compact Hausdorff spaces. This duality serves as a common generalization of de Vries duality between de Vries algebras and compact Hausdorff spaces, and the duality between modal algebras and modal spaces.
متن کاملThe Modal Logic of Stone Spaces: diamond as derivative
We show that if we interpret modal diamond as the derived set operator of a topological space, then the modal logic of Stone spaces is K4 and the modal logic of weakly scattered Stone spaces is K4G. As a corollary, we obtain that K4 is also the modal logic of compact Hausdorff spaces and K4G is the modal logic of weakly scattered compact Hausdorff spaces. §
متن کاملModal Operators on Compact Regular Frames and de Vries Algebras
In [7] we introduced the category MKHaus of modal compact Hausdorff spaces, and showed these were concrete realizations of coalgebras for the Vietoris functor on compact Hausdorff spaces, much as modal spaces are coalgebras for the Vietoris functor on Stone spaces. Also in [7] we introduced the categories MKRFrm and MDV of modal compact regular frames, and modal de Vries algebras as algebraic c...
متن کاملIrreducible Equivalence Relations, Gleason Spaces, and de Vries Duality
By de Vries duality, the category of compact Hausdorff spaces is dually equivalent to the category of de Vries algebras (complete Boolean algebras endowed with a proximity-like relation). We provide an alternative “modal-like” duality by introducing the concept of a Gleason space, which is a pair (X,R), where X is an extremally disconnected compact Hausdorff space and R is an irreducible equiva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Log. Comput.
دوره 25 شماره
صفحات -
تاریخ انتشار 2015